EE 330 Pre-Lab 7 Spring 2022

The square-law model is frequently used to model MOSFETs for quick hand calculations and for gaining insight into circuits. This model, for an n-channel transistor, is described by the equations:

$$I_{G} = I_{B} = 0$$

$$I_{G} = V_{GS} \leq V_{TH} \qquad Cutoff$$

$$I_{DS} = \begin{cases} 0 & V_{GS} \leq V_{TH} & Cutoff \\ \mu C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS} & V_{GS} \geq V_{TH}, V_{DS} < (V_{GS} - V_{TH}) & Triode/Linear \\ \mu C_{ox} \frac{W}{2L} (V_{GS} - V_{TH})^{2} (1 + \lambda V_{DS}) & V_{GS} \geq V_{TH}, V_{DS} \geq (V_{GS} - V_{TH}) & Saturation \\ Equation 1 \end{cases}$$

where,

$$V_{TH} = V_{TH0} + \gamma (\sqrt{\phi - V_{BS}} - \sqrt{\phi})$$

Equation 2

In these equations, V_{GS} , V_{BS} , V_{DS} , W, and L are parameters that can be selected by the designer (design variables). The variables μC_{ox} , λ , γ , and V_{T0} are process parameters that are unique to the process and cannot be selected by the designer. To do any quick hand calculations for a circuit, these process parameters must be found.

For this lab, assume $\phi \approx 0.6V$.

Question 1: Suppose the current through an n-channel MOSFET is measured twice. The first time, the gatesource voltage is V_{GS1} . The second time, the gate-source voltage is V_{GS2} . All other design variables remain the same across both measurements. In both measurements, the device is saturated and $V_{BS} = 0$. You do not know the values of μC_{ox} , λ , or γ . Derive the below expression for the device's no-bias threshold voltage (V_{TH0}). You must show your work.

$$V_{TH0} = \frac{V_{GS1} - V_{GS2} \sqrt{\frac{I_{DS1}}{I_{DS2}}}}{1 - \sqrt{\frac{I_{DS1}}{I_{DS2}}}}$$

Hint: Two equations, two unknowns

Question 2: Suppose the current through an n-channel MOSFET is measured twice. The first time, the drainsource voltage is V_{DS1} . The second time, the drain-source voltage is V_{DS2} . All other design variables remain the same across both measurements. In both measurements, the device is saturated and $V_{BS} = 0$. You do not know the values of μC_{ox} , λ , or γ . Derive the below expression for λ . You must show your work.

$$\lambda = \frac{I_{DS2} - I_{DS1}}{I_{DS1}V_{DS2} - I_{DS2}V_{DS1}}$$

Question 3: Suppose the situation from Question 1 is repeated, but this time V_{BS} is some non-zero value for both measurements. You know V_{TH0} . Could you use this data to find γ ? Derive an expression for γ that is in terms of only currents, gate-source voltages, and V_{BS} . You must show your work.

Question 4: Suppose you know V_{TH0} , λ , and γ , as well as all your design variables. Derive an expression for μC_{ox} .

Question 5: Create an Excel table that implements the expressions you derived in Questions 1 through 4. Keep the table organized and clean. You will use it heavily in the next two labs.

Use the below data to test your Excel table. You should calculate a μC_{ox} of $81\mu A/V^2$, a λ of $0.025V^{-1}$, a γ of 0.44, and a V_{TH0} of 0.71V.

Data Point	I _{DS}	V _{GS}	V _{DS}	V _{BS}	W/L
1	6.011µA	0.9V	1.6V	0 <i>V</i>	4
2	14.07µA	1 <i>V</i>	1.6V	0 <i>V</i>	4
3	17.56µA	1 <i>V</i>	1.6V	0.1V	4
4	8.273µA	0.9V	1.6V	0.1 <i>V</i>	4
5	14.14µA	1 <i>V</i>	1.8V	0 <i>V</i>	4